You are currently viewing PRIMES AND  NON-PRIME PATTERNS  –   OBSERVATION-16	  Squares and Ending Digit Patterns

PRIMES AND NON-PRIME PATTERNS – OBSERVATION-16 Squares and Ending Digit Patterns

Author – Andrew J Frost 29/08/2021 REV TWO PnonP p16

OBSERVATION 16 Squares and Ending Digit Patterns

Patterns in Diagonals showing Squares when a=b in equation 2.

The Last Two Ending Digits of Duplicate and Non-duplicate Squares

Last Digit of Rows -Pattern (non-Primes = red. V = mirror point is between numbers that are pink-use slider at base of table)

row
v
Squares >0149121169289361529841
9611369168118492209240128093481
37214489504153295929624168897921
1Last 2 digits>0149216989612941
6169814909010981
2189412929418921

Primes
V


























1119199191
19199191
19199191
2777313779
77313779
77313779
31111771133
11771133
11771133
41339993919
39993919
39993919
51773377337
73377337
73377337
61991939993
91939993
91939993
72333117711
33117711
33117711
82997731377
97731377
97731377




























93119199191
19199191
19199191
103777313779
77313779
77313779
114111771133
11771133
11771133
124339993919
39993919
39993919
134773377337
73377337
73377337
144991939993
91939993
91939993
155333117711
33117711
33117711
165997731377
97731377
97731377




























176119199191
19199191
19199191
186777313779
77313779
77313779
197111771133
11771133
11771133
207339993919
39993919
39993919
217773377337
73377337
73377337
227991939993
91939993
91939993
238333117711
33117711
33117711
248997731377
97731377
97731377




















259119199191
19199191
19199191
269777313779
77313779
77313779
2710111771133
11771133
11771133
Use slider to see hidden parts of table

The Following Table

The following table is taken from the spreadsheet named:- 20210922-EndingNumbersSquares-Test.ods, (see my Mediafire account to download spreadsheet – https://www.mediafire.com/file/qacbcg4kgnht89m/20210922-EndingNumbersSquares-Test.ods/file ). This table is on a side to side slider – go to bottom of table to adjust data. The data in this table produces the data in the table above.

Abbreviations – div3 = those composite numbers divisible by 3, div5 = those composites divisible by 5, P = prime, oddco = odd-composites that have factors that are exclusively in the prime number list of primes => 7.

7111317192329
div3div5div3div5div3div5div3div3div5div3div5oddcodiv3div5div3div3div5div3div5oddcodiv3div5div3oddcodiv3div5div3
001234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
v
01v
div3139v
div5251525v
P37213549v
div34927456381v
P51133557799121v
P613396591117143169v
div57154575105135165195225v
P8175185119153187221255289v
P9195795133171209247285323361v
div3102163105147189231273315357399441v
P112369115161207253299345391437483529v
div5122575125175225275325375425475525575625v
div3132781135189243297351405459513567621675729v
P142987145203261319377435493551609667725783841v
P153193155217279341403465527589651713775837899961v
div316339916523129736342949556162769375982589195710231089v
div517351051752453153854555255956657358058759451015108511551225v
P183711118525933340748155562970377785192599910731147122112951369v
div319391171952733514295075856637418198979751053113112091287136514431521v
P2041123205287369451533615697779861943102511071189127113531435151715991681v
P21431292153013874735596457318179039891075116112471333141915051591167717631849v
div52245135225315405495585675765855945103511251215130513951485157516651755184519352025v
P23471412353294235176117057998939871081117512691363145715511645173918331927202121152209v
oddco2449147245343441539637735833931102911271225132314211519161717151813191120092107220523032401
div325511532553574595616637658679691071117312751377147915811683178518871989209121932295239724992601v
P2653159265371477583689795901100711131219132514311537164317491855196120672173227923852491259727032809v
div527551652753854956057158259351045115512651375148515951705181519252035214522552365247525852695280529153025v
div3285717128539951362774185596910831197131114251539165317671881199521092223233724512565267927932907302131353249v
P29591772954135316497678851003112112391357147515931711182919472065218323012419253726552773289130093127324533633481v
P306118330542754967179391510371159128114031525164717691891201321352257237925012623274528672989311132333355347735993721v
div33163189315441567693819945107111971323144915751701182719532079220523312457258327092835296130873213333934653591371738433969v
div532651953254555857158459751105123513651495162517551885201521452275240525352665279529253055318533153445357537053835396540954225v
P3367201335469603737871100511391273140715411675180919432077221123452479261327472881301531493283341735513685381939534087422143554489v
div334692073454836217598971035117313111449158717251863200121392277241525532691282929673105324333813519365737953933407142094347448546234761v
P357121335549763978192310651207134914911633177519172059220123432485262727692911305331953337347936213763390540474189433144734615475748995041v
P3673219365511657803949109512411387153316791825197121172263240925552701284729933139328534313577372338694015416143074453459947454891503751835329v
div537752253755256758259751125127514251575172518752025217523252475262527752925307532253375352536753825397541254275442545754725487550255175532554755625v
oddco3877231385539693847100111551309146316171771192520792233238725412695284930033157331134653619377339274081423543894543469748515005515953135467562157755929
P39792373955537118691027118513431501165918171975213322912449260727652923308132393397355537133871402941874345450346614819497751355293545156095767592560836241v
div3408124340556772989110531215137715391701186320252187234925112673283529973159332134833645380739694131429344554617477949415103526554275589575159136075623763996561v
P4183249415581747913107912451411157717431909207522412407257327392905307132373403356937353901406742334399456547314897506352295395556157275893605962256391655767236889v
div542852554255957659351105127514451615178519552125229524652635280529753145331534853655382539954165433545054675484550155185535555255695586560356205637565456715688570557225v
div3438726143560978395711311305147916531827200121752349252326972871304532193393356737413915408942634437461147854959513353075481565558296003617763516525669968737047722173957569v
P4489267445623801979115713351513169118692047222524032581275929373115329334713649382740054183436145394717489550735251542956075785596361416319649766756853703172097387756577437921
oddco459127345563781910011183136515471729191120932275245726392821300331853367354937313913409542774459464148235005518753695551573359156097627964616643682570077189737175537735791780998281
div34693279465651837102312091395158117671953213923252511269728833069325534413627381339994185437145574743492951155301548756735859604562316417660367896975716173477533771979058091827784638649
div547952854756658551045123514251615180519952185237525652755294531353325351537053895408542754465465548455035522554155605579559856175636565556745693571257315750576957885807582658455864588359025
P489729148567987310671261145516491843203722312425261928133007320133953589378339774171436545594753494751415335552957235917611163056499669368877081727574697663785780518245843986338827902192159409
div34999297495693891108912871485168318812079227724752673287130693267346536633861405942574455465348515049524754455643584160396237643566336831702972277425762378218019821784158613881190099207940596039801
P5010130350570790911111313151517171919212123232525272729293131333335353737393941414343454547474949515153535555575759596161636365656767696971717373757577777979818183838585878789899191939395959797999910201

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.